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F-CONVEX FUNCTIONS 

Aharon Ben-Tal and Adi Ben-Israel 

ABSTRACT 

n Let F be a family of functions:  R -»■ R.  A function 
,n R   ■♦• R    is called  F-convex if it is supported,   at each point, 

by some member of    F .      For particular choices  of    F    one 

obtains the convex functions:     Rn ■* R    and the  generalized 

convex functions  in the  sense of Beckenbach.     F-convex 

functions  are characterized and studied,   retaining some 

essential results of classical convexity. 



F-CONVEX FUNCTIONS 

Aharon Ben-Tal and Adi Ben-Israel 

SI.      INTRODUCTION 

Let    F    be  a family of  functions:     Rn*R,   depending on   (n+1) 

parameters    {x*,C*} e Rn x R,    A function    f:   Rn-► R    is  called 

F-convex if its graph is supported at each point by some member 

of     f,  see Definition 2.1.     For particular choices of    F ,  the 

F-convex functions reduce  to the ordinary proper convex functions 

(Example 2.2)   and the sub  F-functions of Beckenbach   (Example 2.3 

and Proposition 2.4). 

In this paper we study the basic properties of  F-convex 

functions. 

Sections 2  and 3 contain definitions and examples. 

Section 4 gives  first order conditions   (so called because 

they involve only first derivatives and the  "gradients"   {x*rCi} 

defined in 3.2)   for    F—convexity.    For families     F e A , gee 

Definition 3.2,   F-convexity is characterized in Theorem 4.2 by an 

analog of the gradient inequality.    The remaining results in Sec- 

tion  4 are conditions  for  F-convexity or strict F-convexity,  in 

terms of the mapping:     x-»-{x*(x),   SjU)}    or the  F-gradient mappings 

x-*-x*(x) ,   see Definition  3.3. 
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Second order conditions   for  F-convexity and strict  F-convexity 

ere given in Section 5.     These  conditions involve  the matrix 

(5.1) H(x)   =  fxx(x)   -   Fxx{xJ(x)/   5f(x);   x) 

which in the classical case  reduces to the Hessian matrix   (Example 

5.2).     The main results here  are Theorems 5.1 and 5.5.     An analog 

of the differential inequality of Peixoto  [14],  characterizing 

sub-F  functions,  is obtained as  a special case   (Example  5.3). 

Section 6 deals with the monotonicity properties  of the 

F-gradient    x*    of an  F-convex function, where    F    belongs to 

certain classes defined in 6.1.     The derivative of    x~    is computed 

in Lemma 6.2,  and the result is  used,   for the separable  families 

(6.10),   to establish  that    x*    is  a P0-function   [P-function]   if    f 

is   F-convex   [strictly  F-convex],   see Theorem 6.4. 

In a sequel paper we study  the corresponding generalizations 

of conjugacy and duality in the  sense of Fenchel   [16].     These results 

involve  a conjugate  family     F* ,    and are hidden in the  classical case 

by the  fact that there    F « F* . 

MM 
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§2.      F-CONVEk  FUNCTIONS;      DEFINITIONS  AND  EXAMPLES 

2.1    Definitions 

n Let     F    be  a family of  functions:     R   ->■ R    with  common  domain  X 

(2.1) 

and range 

(2.2) 

X « n{dom F:   F€ F} 

H A u{range F:   F e  F} 

Let    f    be a function:     Rn-*■ R with domain 

(2.3) dom f c x 

and  let    S    be an open subset of dom f .    Then    f    is  called 

F-convex in S if for every    x€s ,   there exists em    Fe F    such that 

(2.4) f(x)   - F(x)     and    f(z)   ^ F(z)       for all    x^zes, 1) 

in which case F is called a support of ft S at x. The function f 

is called strictly F-convex in S if strict inequality holds in (2.4) 

for all x ^ z € s. 

If there is nc need to specify S , for example if S =domf, 

the above names are abbreviated by omitting S , e.g., F-convexf 

support of f at x y etc. 

1) The name  F-convex function was used recently   ([15],  p.241) 
to denote  the sub-F  functions,  see Example 2.2 

EM 
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2.2    Exeunple 

n Let    F    be the  family of affine  functions;     R   -•■ R ,   i.e., 

(2.5) F =  {F{.)  = <x*,     >  -  ^*:  x* e Rn
f   ?* e R}   . 

.n Then a  function f:  R   -»-R    is   F-convex if and only if  it is  a proper 

convex function,  i.e.,   a convex function whose epigraph is  a non 

empty  set containing no vertical  lines,   ([16],   §4). 

2.3    Example 

Let F be a family of continuous functions:  R-* R with 

domain X = (a,b)  and such that 

(B)  For any two distinct points in X , say, 

a < x. < x < b 

and any two real numbers     ^1^2^'  there is  a unique     F €  F 

satisfying 

F(x.)   - y i   ' (i-1,2)   . 

We call such an    F    a Beckenbach family in   (a,b) .     E.F.  Beckenbach   [1] 

called a function    f s   (afb) * R    a sub-F function if  for any two 

points 

a < x.   <  x«  < b 

mm 
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the member of   F ,  F.2, defined by 

(2.6) F12(xi)   »  f(xi)f (i-1.2)   , 

satisfies 

f(x)   < Fl2(x)   , x1 < x < x2   . 

M.M.  Peixoto   ([13] ,[14]  Theorem 1}   showed that if    f    is  a sub-F 

function and    a < x.  < b    then there exist two functions 

Fi €  F   , (i-1,2)   , 

such that 

P^x^   - f(x0)   , (i-1,2)   , 

P2(x)   < P1(x)   <  f (x)   , (a<x<x0)   , 

and 

Fl(x)   < F2(x)   <, f (x)   , x.  < x < b     . 

(Furthermore,  if the derivatives    f'(x0),  F{(xQ)  and    F2^x0^     «xist, 

they are equal).    Thus both    P.     and    P,    support    f    at    xQ . 

Therefore every sub-F function is  F-convex.    We will now prove 

the converse  for Beckenbach families   F . 

^ 
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2.4    Proposition 

Let    F    be a Beckenbach  family in   (a,b).    Then a function 

f*.   (a,b) * R    is F-convex in   (a,b}   if and only if    f    is a sub-F 

function. 

Proof. 

The proof of the "if" part was cited above. 

To prove "only if" suppose    f    is not A sub-F function,  i.e., 

there are three points 

* < Xl *  x0  " X2  * b 

such that the function    F.2 €   F .   defined by  (2.6),  satisfies 

(2.7) F12(x0)   <  f(x0)   . 

Suppose that    Fn €  F    is a support of    f    at    x. #   i.e.. 

(2.») f(x0)  - F0(x0)     ani    f(x)  iF0(x),      a<x<b  . 

From (2.6), (2.7) and (2.8) it follows that F,. and FQ     intersect 

twice over the interval (a,b), contradicting (B).  Therefore f is 

not  F-convex. D 

2.5 

Let   6 (x,y,2t)    1M a continuous  function:   (a,b) xRxR* R,   auch that 

(PI) For each  ^x0»yQ#yo^ 6   (a,b) * R * R,  the differential equation 
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(2.9) y"  ■ GCx^y'), (a < x <b)   , 

has a unique solution    y*y(x)    satisfying 

(2.10) y(xn) - y 0 ' yMx0)   » y^   . 

(P2) 

(P3) 

(2.11) 

The solution of  (2.9)   is continuous with respect to the 

initial values    y0» YQ • 

Por any two points    (x.,y.}  €   (a,b) xR    (i ■ 1,2)    with 

xl ^ x2'   there i8 a unique  solution of   (2.9)   satisfying 

yu,) ri' i- 1,2   . 

Let    F    be the Beckenbach family of solutions of  (2.9). 

M.M. Peixoto   ([14]  Theorem 2)  showed that a function    f €C2(a,b) 

is a sub-F function if and only if 

(2.12) f  > GU^f)   , a < x <b  . 

2.6    Example 

While sub-F functions are continuous   ([11, [15]    p.   242),   an 

F-convex function need not be continuous in its domain, even  if 

each    P € F    is  continuous: 

Let    F    be the family of functions;    R-»-R 

P(x) - P(x*,C*;. x)   - C*sin(ex*'xl -1) 

M 
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depending on the two parameters 

x* > 0 , 0  <  C* < 1   . 

Dien the  function 

^1      if    x? 

\o      if    x« 

0 
f(x) 

0 

is  F-convex.     Indeed,   for every    x^O,   the  function    F »F(x*,r,*; •) 

defined by 

logd+f) 
x*—nn— 

supports    f    at    x .     Also every    F € F    supports    f    at    0 . 

We show now that an F-convex function inherits from    F    its 

lower semi continuity. 

2.7    Proposition 

Let    F    be a family of l.s.c.   (=  lower semi continuous)   functions 

and let    f    be  F-convex in    dom f .    Then    f    is l.s.c.  in    dorn f . 

Proof. 

Suppose    f    is not l.s.c     Then  there exists an    x € dorn f 

such that 

(2.13) f(x)  > lim inf f(y)   . 
y -»• x 



- 9  - 

Let F e F support f at x .  Then 

F(x) = f(x) > lim inf f(y) >_ lim inf F(y), 
y-^x       *  y*-x 

by (2.4) and (2.13), 

contradicting the lower semi continuity of F . D 

2.8    Notes 

For  further generalizations  of  convexity see  the surveys  in 

([2],  Chapter  4),   [4],   and   ([15],  Chapter VIII). 

For functions of several variables,  the  analogs of the sub 

F-functions  are  the sub functions in particular the subharmonic 

functions;     see   [2]  p.   146,   ['j]  and   [B] t where  applications  to 

second order differential inequalities  are surveyed. 

mm 
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§3.     REQUIREMENTS   ON   F 

3.1    General 

With Examples  2.2,   2.3 and 2.5  as  our motivation, we consider 

from now on only   families     F    of functions     F:   Rn-•■ R    depending 

continuously on    n + 1    parameters 

{x*,5M e x* * = = * 

,n where the sets of parameters    X*    and    E*    are given subsets  of R 

and    R    respectively.     The general member of     F    is thus denoted by 

(3.1) F(.)  - F(x*,5*; • ),   (x*ex*,  5*eH*)   f 

with function values 

(3.2) F(x)   = F(x*,5*;   x), xex  . 

We assume  that the mapping: {x*,^*} ■*  F(x*#C*; * )     is  one  to one 

on    X*x5*#     i.e.,     F(x*,5*;»)     is  uniquely determined by     {x*,£*} 

3.2    The class   A 
<«• 

k n Let    D   (X)     denote the functions:     R   -> R    which are    k    times 

differentiable in    X .      If F c D(X)    we define the set 

(3.3) Z ■   u{range 

x* 

i   FG F}   C   R x Rr 

where F  is the gradient of F with respect to x . 

—m 
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A feiinily     F    of different!able  functions  is  said to be  in 

class A,  denoted by    T G A,  if for every    xGX    and   |^| ez ,    the 

system 
K 

(3.4) 

(3.5) 

5 =  F(x*,C*;   x) 

y =  Fx(x*,5*;   x) 

has a unique solution     {x*,£*} e X* x E* . 

If    FCD(X)     and if     f    and    S    are  a function:     Rn-j 

an open subset of    dorn f   respectively, we denote by 

R    and 

(3.6) 

the facts 

(Dl) 

(D2) 

(D3) 

We abbreviate    f 

S c dorn f   c x 

f   e D(S) 

'f(x) 
range  { 

L«vOoJ 
:  xes} c z   . 

dgm f F    by    f * F  . 

If    F e A,   f * F    and    x e dorn f   we denote by 

(3.7) 

the unique solution of 

(xj(x),  5f(x)) 

(3.8) f(x)     - F(x*,C*;   x) 

(3.9) fx(x)   - Fx(x*^*;   x)   . 
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A family     F    of differentiable  functions  is  said to be  in 

class A,  denoted by    F 6 A, if for every    xex    and  p   ez ,   the 

system 

(3.4) 

(3.5) 

C =  F(x*,C*;   x) 

y =  Fx(x*fC*;   x) 

has a unique solution     {x*,C*} € X* x =* . 

If    FCD(X)     and if     f    emd    S    are a function.    Rn fR    am? 

em open subset of    dorn f   respectively, we denote by 

(3.6) f * F 

the  facts 

(Dl) 

(D2) 

(D3) 

We  abbreviate     f 

S c domf   c x 

f   € D(S) 

'f(x) 
range  { 

lAOOj 
: xes) c z  . 

dQpn f F    by    f * F  . 

If    F € A,   f *> F    and    x £ dom f   we denote by 

(3.7) (xj(x),   Cj(x)) 

the  unique solution of 

(3.8) f(x)     - r(x*,C*;   x) 

(3.9) f   (x)   * F   (x*,5*;   x) 

MB 
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3.3    The class C 

A feiinily     F    is  said to be  in class  C ,    denoted by    F € c f    if 

for every    {x*,x} e  x* * x    the  function    F(x*,';   x)     is a strictly 

decreasing function of    C*,5*€H* .     In this  case, we denote by 

F   (x,»;  x*)     the  inverse   function of    Fix*,-;   x)  .      It satisfies 

the  identity 

(3.10) C - F(x*,FI(x,C;x*);x), C^H 

If    F6Anc,    f^F    and    x e dorn f ,  then   (3.8)   gives 

(3.11) i* -  F-L(xff(x);  x*) 

which,  substituted in   (3.9)/gives 

(3.12) f   (x)   =  Fv(x*fFI(x,f(x);   x*);   x)    . 

The unique solution of   (3.12)   is then called the   F-gradient of  f 

at x ,   and is denoted by    x*(x) . 

3.4    Example 

Let    F    be the  family   (2.5)   of affine  functions:  Rn^R. 

Then 

(a)     FCD(Rn)f   F   (x*,^*;   x)   - x*    for every    FGF    and    x6Rn, 
n and  (3.3)   gives    Z « R * R   . 
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(b)     ceA.     For every    x e Rn    and      ^    e R * Rn ,    the  unique solution 

of   (3.4)-(3.5'   is 

x* = y »      5* ^ <y»x> - c • 

(c)      F€C . 

(d)     f * F    means that    fGD(dom f) 

(e)     If    f *F    then  for every    x e dorn f 

(3.13) x*lx)   »  fx(x),   Cj(x)   » <fxix),   x>  - f(x)   . 

Thus  the F-gradient of  f,     x* f   coincides here with its ordinary 

gradient    f   . 

3.5    Example 

Let ♦ be a given function: X**X-»R and let the family F 

consist of the functions F(x*,£*;•), {x*,^*} e X* » E* , with values 

(3.14) F(x*,^*; x) » «(x*^) - £*,  x€X. 

Then: 

(j))     F€A    if and only if the  following two conditions hold: 

(al)   ^(x*,»)€D(X)     for every    x* e x* . 

(a2)   For every    x£X, y€   u    range ♦„(x*,*)  ,   the sys 
v* X 

tern 

y - ♦x(x*,x) 

has  a unique solution    x* . 
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(b) Fee . 
mm 

(c) Let    F G A,   f «» F    and    x e dorn f .    Then the  F-gradient of    f 

at    x/     xt(x)f   is the  unique solution    x*    of 

(3.15) fx(x)   - ♦x(x*,x)   . 

Also 

(3.16) F.*(x)   =  ♦(x^x)^)   -  f(x)    . 

A concrete example is the  following family    F    defined by 

F(x*,C*;x)   £    I    x* ^(x.)   + — ^  

X*  ö R" ,      5* «  R,       X » r» dem ♦i 

-  V 

where  for evsry    i«l,2,...,n,   ^  :  R-*R+    is differentieüale and 

♦^   > 0 .     The condition    f * F      for this case  is 

or 
fv    > 0 xi 

f       < 0 xi 

i " 1,2,,., fix 

i*lf2f...,n . 

The  F-gradient is 

where 

t2(x) 
^ ■ ^Ffenh:) 

V^V3^ 
.n t^M/^J^) 

4    i-1 *t L i«l ♦ J 
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S 4.      FIRST ORDER CONDITIONS   FOR   F-CONVEXITY 

In this  section we  give   first  order conditions   (i.o-called 

because  they involve only  first derivatives  and the   "gradients" 

{xt/5r  /of    f ,   see   (3.7))   for F-convexity,  for families     F    in 

class    A .      These conditions  use  the extremal property of  the 

supports  implied by the  inequality   (2.4).    First we require 

4.1    Lemma 

Let  FGA, f: Rn-•■ R, and let  f I F.  If  f: S  is supported 

(by some F £ F) at a point x e S , then 

(4.1) P(x*(x),Cf(x);-) 

is the unique support of f at x . 

Proof. 

Let    F(x*r5*;»)  €  F    support    f:  S    at    x,    i.e.. 'O'-O 

(4.2) 

and 

(4.3) 

h(2)   Ä  f(z)   -  F(xJ^J;z)   i 0 f      V zSS f 

h(x)   - f(x)   - F(xJfCj;x)  - 0 . 

Therefore    h(z)     is minimized,   in S,  by    z»x.     Since    S     is open, 

this implies  that    x    is  a critical point of    h ,   i.e.. 

(4.4) *     r* hz(x)  - fx(x)   - Fx(xJ,^;x) 

mm 
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Since FEA, a comparison of (4.3)-(4.4) and (3.8)-(3.9) shows ... 
that 

proving that (4.1) is the unique support at x • 0 

4.2 Theorel"l 

Let Fe A , f: Rn + R, and f i F • Then f is F-convex in s ... 
if and only if for every xes 

(4.5) f(z) ! F(x;(x) ,t;(x) ;z), V x rJ1 z e s • 

Furthermore, f is strictly F-corivex in s if and only if for 

every xes 

(4.6) 

Proof. 

!!· From (4.5) and (3.8) it follows, for any xes, that 

the function (4.1) supports f: S at x • It is the uniqus support 

if (4.6) holds. 

Only if. Let f be F-convex in s. Then, by Lemma 4.1, for 

any xes, the function (4.1) is the unique support of f: s at x • 

The inequality (4.5) then follows from (2.4). Similarly (4.6) 

follows from the strict F-convexi ty of f • 0 
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4.3 Example 

Let    F    be  the  family   (2.5)   of  affine  functions:     Rn-•• R , 

F ^  {F(x*,C*J')  =  <x*/.>  - 5*:  x*eRn,   c*eR)   • 

Then,   using   (3.13),   the  inequality   (4.5)   reduces to 

fU)   >  <fx(x),   2-x> + f(x) ,       V xj'zes , 

the classical gradient inequality. 

4.4 Corollary 

(a)     Let    F e A,  and let    f:  Rn-»■ R,   f * F,   be  F-convex in S .   Then 

f    is  strictly F-convex in    S    if  and only if the mapping 

(4.7) x - {xJ(x),Cf(x)} 

is one to one on S . 

(b)     Let,   in addition.     Fee.     Then    f    is strictly  F-convex in S 

if and only if the mapping 

(4.8) x*:   x ■*■  xi(x) 

is one to one on S . 

Proof. 

From Lemma 4.1 it follows,   for every    yes,   that the  function 

(4.1)   is the unique support of    f:  S at x .     By definition,   f is 
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strictly  F-convex in    S    if,   and only  if,  every support of    f:   S 

supports     f    at    exactly one point  of    S .     This  is equivalent  to 

the mapping   (4.7)   being one  to one  on    S . 

To prove  the  last part,  note  that the  additional hypothesis 

F € c    implies 

(4.9) [x    -*    x*(x)   on  S] [x 1-i-1  {x*(x),CJ(x)}     on S] 

Indeed, the implication —> is always true.  Conversely, suppose 

that x,  is not one to one on S , i.e., there exist x.^x^es , 

xl ^ x2 ' s^h that 

(4.10) xjfx^ » x*(x2) ^ xj . 

Let  C* A 5j(xi) - FI(x.rf(xi);xJ)  and let 

Pi(-) Ä F(xJfcJ,.),   (i-l,2) . 

Then 

Fx(xi) « f(xi),   F;:(xi) » ^(x.) ,     i-1,2 . 

Hence by Theorem 4.2, F1 supports f at x. . If ^t ■ C, » then 

this and (4.10) contradicts the fact that (x*,£*) is 1:1, estab- 

lished earlier. Thus suppose that ^i > ^o ' Thi8 implies, since 

Fee, that F* (z) < F2 («)  Vzes.  In particular 

F* (x1) > FMx^ - f(x1) 

contradicting the fact that F2  is a support. D 

_«  — MMMMriM 
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4.5    Theorem 

Let     FcAnc,    f:   Rn ■► R ,    and    f I F .     Then    f    is  strictly 

F-convex in    S    if the following two conditions hold. 

(a) The mapping    x*    is one to one on    S . 

(b) For every    x6S    and for every sequence     (JL }cs    which either 

converges to a point    y € bdry S     or    I 2. I ♦<»    there exists  an 

x € S     such that 

I .- (4.11) lim sup  {Fx(z  ,f(2  ),x*(x)) -Fx(x,   f(x),xj(x))}   <  0 

where F  is defined in §3.3. 

Proof. 

For any    x€S    consider the  function 

(4.12) T(z)   Ä FI(2#   f(z);   xj(x)   . 

We show first that    z = x    is  a critical point of    T 

Differentiating the  identity 

(4.13) F(x*,  F1(yr   f(y);   x*) ;  y) - f(y)   -  0 

with respect to y we get 

(4.14)  Fx(',->.)+F^(-,»;-)[Fj(yrf(y);X*) +F^(y,f (y) ;x*)fv(y) ] - fjy) = 0 

where 

x '   x 
1 

(-,.».) - (x*r F
I(y, f(y);x*); y) . 
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Nay Pc*?'3' since Fee.  Therefore, for y = x and x*=x*(x) , 

it follows from (4.14) and (3.12) that 

(4.15) F5(x,f(x); x*{x)) +Fr(x,f(x); xt(x)) fv(x) « 0 

which, by   (4,12),   is the aasoe as    T   (x) «0,  proving that    2 = x    is 

critical. 

Moreover,     z»x    is the  unique  critical point of    T    in    S . 

For suppose  that    XT'X1 es    is another critical point of    T ,    i.e. 

T   (x1)   - F5(x',f(x');   x*(x)) +Fp(x',f(x');x*(x))fv(x') =0 z x x ^ r x 

implying that for y ■ x*  and x*»xi(x) , (4.14) reduces to 

Fx(xJ(x),F
I(x,,f(x'); xj(x)); x•)-fx(x

,) -0 

which, together with (3.12), implies that 

xJU«) = x*(x) , 

contradictinq   (a). 

We show next that 

(4.16) sup{T(z) :   z e s)   - T(x)   . 

Indeed if this supremum occurs at some z *> y € bdry S  or if a 

supremlzing sequence {z. } is such that • z. I *«•  then the 

supremum is also attained at x e s , by (4.11). Therefore z«x 

is a critical point of T , proving that x«x, since the latter 



-     21    - 

in the  unique  critical point in    S ,    and  therefore   (4.16)   becomes 

FI(xrf(x);   xj(x))   > FI(zff(z-;   x*(x))   ,       V x/zes  , 

which is the same  ai. 

f(z)   >  F(x*(x)#   FI(xff(x);   x*(x));   z) , V x / z e S   , 

proving that    f    is strictly F-convex in    S ,   by theorem 4.2. O 

4.6    Example 

Consider the   family 

F -  U(x*,«) -C*!  x*€X*f   5*€ 5*}   , 

ot Example ".5 and let  FGA, ft Rn-*R, and  f t F.  Then 

condition KD)  of Theorem 4.5 follows from 

(bl) For every x* € range{xj(x): x^S}  and every sequence ^zy^ 

as in Theorem 4.5(b), 

(4.17) lim inf{f(z.) -(>(x*rz )} » + « 

In particular,  if 

S - dorn f   « X - R n 

and 

(4.18) lim sup ^f*!*- < «  , V x* e range xt 
I xl-»••«• 
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then  condition   (b)   of Theorem 4.5  is  satisfied if 

Urn       IL*1.    ~   oo lim    I „i     = 00   • 

Note that (4.18) is trivially satisfied by the family  F of 

affine functions.  Hence, a differentiable function f: R ■♦R 

is strictly convex if the following two conditions hold. 

(a)  The mapping 

is one to one on R 

(b) 

n 

x - fx(x) 

lim f<x) 

Ixl - ^ 

As a concrete example of condition (bl) let F be the family 

of functions:  R2 * R given by 

-x,       -x. 
(4.19) F(x*^*; x) = x* e  1 + xjx2 e  

1 - C1 

with X = X* « R2, ?* R . 

Consider the  function    f:   R2 -»• R 

2x,        , -x. 
(4.20) f(x)   «ye     1^x2e     1 

with    dom f = R2 .      Then    f    is  F-convex in    R2     since: 

(a)     The  F-gradient 

xj(x) 

3X,        , 
_*     ! _  ! v2 

e T X2 
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is one-to-one,   and 

(4.21) range x^ 

(b) fU) -4»(x*»z)  =   (7 

2z 

= {(x^xj)   e  R^:   x*4x;2  < 0} 

2z,     -,     .     -zi. .  *  -"Zl + x*Zo e 
Zl) =   (ie^.iz^e    h   -   (xl I42 ^2  2 

z 'zl 
l.-l .   ^*+ix!2)e    Wi  (z2-x;)2 e 
j e     " -   (xiTI "2 

by (4.21)   the coefficients 

2   v'2    "2 

of all exponents  are positive  and hence 

Urn     [fU) -♦(x*,2)l - 
Izl 

V x* G range xf 
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§5.     SECOND ORDER  CONDITIONS   FOR   F-CONVEXITY 

In this section we  collect second order conditions   (involving 

second derivatives)   for  F-convexity. 

5.1    Theorem 

Let    F6AnD2(X)/   f:   Rn-► Rr   f IF    and    feD2(S).     Then: 
Ma 

(a)     f    is  F-convex in    S    only if,   for every    xes,  the matrix 

(5.1) H(x)   ^  f:cx(x)   '  Fxx(xf(x)'   ^f(x)'   x) 

is positive semi definite. 

(b)     Let    S    be convex and let    f    and each    Fe F    be twice conti- 

nuously differentiable  in S.    Then    f    is   F-convex in    S    if 

(5.2) 
,1 

<y, J      (fxx<x+sy)-Fxx(x*(x)fCj(x)j   x + sy) )yds>  >^ 0   , 

for every    x e s    and    y e s - x . 

If strict inequality holds in   (5.2),    F    is strictly F-convex in S 

Proof. 

(a)    Let    f    be  F-convex in S.     Then,  for any    xes,  the function 

(5.3) h(z)  ^ f(z)   - F(x*(x)f   Cf(x);   z) 

A matrix    H e Rn n    is called here positive semi definite  if 

,n <Hz,  z> ^ 0,      V z e R" . 

We do not mean by this that H is symmetric. 
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satisfies 

(5.4) h(x)=0,       h   (x)=0,       by   (3.8)-(3.9), 

and 

h(z) ^0,       Vzes,    by Theorem 4.2. 

Therefore    z = x    minimizes    h    in S .      Since    S     is  an open set     , 

it follows  that 

h,,(x)  = H(x) zz 

is positive semi-definite. 

(b)     The function    h    of   (5.3)  satisfies 

h(z)   = h(z) -h(x) - <h,{x)f   z - x> ,      by (5.4), 

=  <(h   (x + t(z-x)) - h   (x)),   z-x> ,    for some 0 < t < 1, z z 
by a mean value  theorem   ([12],  Theorem 3.2.2), 

■ <z - x, () h  (x +st(z-x) )ds) t(z-x)> , /  zz 
o 

by a mean value theorem ([12], Theorem 3.2.7), 

l f1 

- £ <y »   J     lfxx^x+syJ -Fxx(xJ(x),^(x) ;x+sy))yds> 
o 

where    y » t(z-x). 

Thus,   (5.2)   implies that 

(5.5) h(z)   >  0  , Vzes, 

proving that    f    is   F-convex in S,  by Theorem 4.2. 
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Similarly,   strict  inequality  in   (5.2)   implies  strict inequality 

in   (5.5),  hence  strict  F-convexity. D 

5.2 Example 

Let F be the family (2.5) of affine functions:  R -^ R. 

Then the matrix H(x)  of (5.1) reduces to the Hessian of f 

H(x) = fxx(x) 

and Theorem 5.1 gives the classical conditions for convexity in 

terms of the Hessian. 

5.3 Example 

Let F be the Beckenbach family of solutions of the second 

order differential equation 

(2.9) GU^y'),    (a<x<b) , 

discussed in Example 2.5.  Then (5.1) becomes 

H = f" - GU^f) . 

Now, suppose that  F C C2 (X) ,  f€C2(S),  then  H(x) >0  implies 

H(x + sy) >0  for 0 <8 < 1 and    y sufficiently close to x .  Thus 

(5.2) is a strict inequality in some neighborhood of x, and we con- 

clude that f is, locally, strictly F-convex.  By proposition 2.4 

this implies that f is locally strictly sub-F, which by ([1] 
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Theorem 7)   implies   that     f     is  sub-F globally in   (a,b) .     This 

result is the   analog of   [14],   Theorem 3.    To get the   analogous 

result of   ([14]  Theorem 1),  we need the  implication    H(x) >_0 —* 

H(x + sy) >0,     for    0 <s < 1    and    y    sufficiently close to x,  for 

which Peixoto's additional  requirement,   {P2)   of Example  2.5,   is 

needed   (see Peixoto's proof of   [14]  Lemma 1). 

5.4     Definition 

A mapping    T:   Rn-»■ Rn    is  called one to one  on  R    if 

(a) x,yeRn
r     x^y^T(x)   ;/T(y). 

(b) The inverse images    T     (B)     of bounded sets    B c Rn    are 

bounded. 

5.5    Theorem 

Let FeAncnc2(Rn) ,     f:   Rn-R,     f € C2 (Rn)     and    f*F   . 

Then     f    is  strictly  F-convex in Rn if the  following two conditions 

hold 

(a) The mapping    x*    is one  to one on R   . 

(b) For every    x e Rn ,    the matrix 

(5.6) H(x)   -  fXx(x) 'Fxx(xf(x)'   Fl(x»f<x)'   xj(x));   x) 

is positive  definite.     Conversely,  if    f    is strictly  F-convex in Rr 

then   (a)  holds and the matrix    H(x)     is positive  semi-definite for 

every    x ^ Rn . 

M 
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Proof. 

First we note, by (3.11), that (5.6) and (5.1) are the same 

■>n For any    x^R      consider now the  function 

(4.12) T(z)   =  FI(z,   f(z);   x*(x))    . 

As in the proof of Theorem 4.5  it  follows  from   (a)   that    z = x 

n is  the unique critical point of    T    in    R    . 

Differentiating  the  identity   (4.13)   twice with respect to    y 

we  get,  by using   (4.15)   and   (3.12), 

(5.7) T     (x)   = =i— H(x) 

(where    F.^    is evaluated at     {x*(x),  F   (x,f(x);   xt(x));   x}).     From 

(5.7),   (b)   and    FGC    it  follows that    T     (x)     is  negative  definite. ^ z z 

Therefore    z = x    is  an  isolated local maximizer of T,   and its 

unique critical point in Rn . 

Thus, by Leighton's Theorem  [9], see also   [171,     z = x    is the 

global maximizer of T,   i.e., 

PI(x,f(x);   x*(x))   >  FI(z,f(z);   x*(x)) ,     V x ^ z G Rn , 

which is the same as 

f(z)   >F(x*(x),   FI(x,f(x);   x*(x));   z) ,     V x ^ z 6 Rn , 

n proving that    f    is strictly F-convex in R    by Theorem 4.2. 
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,n If     f    is strictly  F-convex in    R      then   (a)   and   (b)   follow 

from Corollary  4.4  and Theorem 5.1(a)   respectively. 

5.6    Example 

Let     F    and    f    be given by   (4.19)   and   (4.20)   respectively, 

Then the matrix  (5.1)   is positive  definite 

H(x)   = 

r    2x 
3e     J 

Lo 
-x. 

and     f     is  strictly  F-convex in    R2 ,   by Theorem 5.5. 
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S6.     MONOTONICITY OF   F-GRADIENTS 

In this section we prove  monotonicity results  for the  F-gradien 

xt    of  an  F-convex function.     We  recall that a mapping    g:   R   -•■ R 

is  a P~function   [PQ-function]   if  for every    Xfyedomg,   x^y,  there 

is  an  index    k « k(x,y) G {l,2,...,n}     such  that 

(xk"yk) (9k(x) "gk(y))   >0       l(xk"yk) (gk(x) "gk(y))   -0    and 

x-^y. ],     see   [10].     In particular,   a mapping    g:   R   -* R      is monoton 

[strictly monotone]   if  for every    x#yedomg,   x^y,    we have 

<x-y,  g(x) -g(y)> >  0     [<x-y,  g(x) -g{y)>  > 0].     We  also require 

the  following 

6.1    Definitions 

A family    F    is said to be in class    A. ,   denoted by    F G ^ , 

if     FeA    and for every     ^x*,^*;   x} € x* x 5* x X    the derivatives in 

(6.1)   are continuous and the matrix 

(6.1) J(x*,C*;   x)   = 

F^(x*,i.*i  x) 

.F5*x(x*^*;   x) 

Fx*(x*'5*;   X) 

Vx(x*'5*;   x) 

is  nonsingular,   say 

D Ttiis matrix is the Jacobian matrix of the  function 

see   (3.4)-(3.5). 

r F(-r»;   x)l 
LFX('»'; x)]  ' 
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(6.2) det J(x*,C*; x) < 0 . 

A family  K is said to be in class A , denoted by  F G A_ , ~2 -2 

if     F e A,     find  for every    x^x    the matrix 

(6.3) J0(X)   =FT7   [Fr*  Vx"  ^x^*1   ' 

where all derivatives are evaluated at  {x* (x) ,5* (x) ; x} , is 

positive definite. 

6.2  Lemma 

Let     FGA   nc,     f:Rn-»-R,     f I F  and let    f    and each     F€F 

be twice  continuously differentiable in S.    Then,   for every    xes. 

(6.4) Dxx*(x)   =« JQU)'
1
 H(x) 

where    D xi^x)     denotes the derivative of    x*    at    x    and    JQ 

and    H    are  given by   (6.3)   and   (5.1) ^respectively. 

Proof. 

For any    x€S    consider the system 

(3.8) F(x*,C*;   x)   -  f(x)   = 0 

(3.9) F   (x*#C*;   x) - f   (x)   = 0 

which,  since    F€ A, has a unique solution  {x*(x),C*(x)}.     The 

implicit  function theorem,   applicable  since     FeA    ,    then gives 
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-1 

(6.5) 

Dx^(x) 

■ D x*(x) •- x  f F F £*x       x*x 

fx(x)   -  Fx(x*{x)^*(x);   x) 

fxx(x)-Pxx(x?(x)^f(x)'   x). 

where  the  derivatives 

,T     -, 

are evaluated  at  {xf(x),5*(x);   x}. 

Using   (3.9)   and   (5.1),  we  rewrite   '.6.5)   as 

(6.6) F_4D ^*(x)   +  FT
äD x*(x)   =  0 5*  x  f x*  x f 

(6.7) Ff*vDv^f<X>   +Fv*vDvXf(X)    -   H(X)    . 5*x xsf        ' *x*x*'x"f 

Now     F-^f'O    since     Fee.     Eliminating    D ^(x)     from   (6.6)   and 
% « x  t 

substituting in   (6.7)   gives 

H(x)   - J^-   IF-#F   .v-F_,  F^]D xj(x)    . 5*  x*x      C*x x*J"x  f 

The  proof  is  completed by  showing  that the matrix 

lF5*Fx*x "  FC*xFx*1 

is nonsingular, which follows  since 

(6.8) T 
x x* 

l-l 
<tetlF

e*Fx*x-Fr*xFx*]   - ^    det 

P. T 
X* 

FC*x    Fx*x 
by Sylvester's   identity   ([7],  Section  II .3)# 

ft 0,  since   F e C n A.  . 

man MH 
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6.3    Example 

Then 

Let     r    be  the  feUuily   (2.5)   of  affine   functions:     Rn-•• R, 

x*(x)   =  f   (x), by Example  3.4, 
I* •» 

JA(x)   =1 by   (6.3)   since     F   .     »I,     Fr<r    =0 0 ■' x*x ^*x 

and   (6.4)   reduces to the  obvious 

(6.9) Dxfx(x)   -  fxx(x)   . 

If     f     is  a convex   (strictly convex]   differentiable  function,   then 

its gradient     f      is monotone   [strictly monotone]   in    dorn f .     This 

is an  immediate consequence of  the gradient inequality   (Example   4.3), 

and Theorem 4.2.     Alternatively  and  less  directly,   the  monotonicity 

of    f       can be  shown to  follow  from   (6.9)   and the  fact  that     f is 
X XX 

positive  semi  definite,   sc»,  e.g.   [12],   Theorem 5.4.3.     Two other 

cases  in which the  factorization   (6.4)   is  used to establish  a mono- 

tonicity property of the  F-gradient    x* ,   will now be given. 

6.4    Theorem 

Let     F € A. ci c2 (X)     where     X - I, * 12 x ... x ln    is  the product 

of open  intervals    I. c R,   (i»l,...,n).     Let each    FeF    be of the 

form 

n       . 
(6.10) F(x*#5*;x)   =     I     F1(x*#x.)-5* 

i-1 1    1 

wm 
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where     F   (x*,*):   I.-^R     (i = 1,2 r . .. #n) .     Let     f:   R   ■* R    be   F-con vex 

[strictly   F-convex]  with    dorn f   ^ X    and     fGC2(X).     Then    x*    is 

a P -function   [P-function]   in  X. 

Proof. 

From   (6.10),   (6.3)   and     FeA      it  follows  that 

J0(x)=Fx*x 

a diagonal,   positive  definite  matrix.     From   (6.4)   and Theorem 5.1(a) 

it therefore   follows,   for an   F-convex  function     f ,    that    D x*(x) 

is  a P.-matrix,   (see   [5], [6]),   proving that    xt    is  a P.-function, 

by   [10],   Corollary  5.3. 

If     f    is  strictly   F-convex,   then,  by Corollary  4.4(b) 

(applicable  since     F e C) ,   it  follows   for any    x,yGX,   x^y,   that 

there  is   a    Jc = k(x,y) e (1,2,.. . ,n}     such  that 

x^ ^ yk       and       xj(x)k ^ x^   , 

proving  that     x*     is  a P-function. Ü 

A special  case of Theorem 6 .4  is  the   following,   one   dimensional 

result: 

6.5    Corollary 

Let     F e A. n c    be  a  family   of  functions:     R-^R,   let     f;   R>R, 

S     an open subset of    dorn f ,   and   let     f     and each    Fe F     be   twice 

continuously  differentiable  in  S.     If     f    is   F-convex in S   ttien  x*f 

is  a nondecreasing  function in     S . 

«■ 
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Proof. 

Using   (6.3),   (6.8)   and  (6.1)  we write 

(6.11) J0(x)   = ~- det J(x*(x)r   ?*(>.);  x) 

> 0 ,   by   (6.2)   arJ     Fee, 

Therefore 

^- x*(x)  ^ 0 ,   by   (6.4)   and Theorem 5.1(a) D 

6.6 Corollary 

Let F, f and S br   as in Corollary 6.5, where S is an interval 

(a,b).  If 

f"(x) > F (xt(x), C(x), x),  xes, 
xx  r      i 

then    f    is strictly   F-convex. 

Proof. 

From   (6.4)   and   (6.11)  we  infer that    x*     is  1:1 on   (a,b) .     As 

in the proof of Theorem 5.6    this    implies that    z = x    is a local 

minimizer of    hiz)   s  f(z) - F(x* (x) ,5* (x) ;   z)     and that no other 

critical point exists  in  (a,b).     Hence     z = x    is the unique global 

minimizer of    h(z)f     which was previously  shown  to be equivalent 

to the strict  F-convexity of     f . D 
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6.7    Corollary 

Let    F    be  as   in Theorem 6.4,  with     X = R    .     A function 

f:  Rn-»-R    with    dorn f =Rn,     f e c2 (Rn> ,     f « F    is strictly  F-convex, 

if the matrix    H(x)     is positive definite. 

Proof. 

Follows from (6.4) and Theorem 5.5 D 
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